[etriantafillou at google dot com]
I'm a senior research scientist at Google DeepMind, based in London UK. My main research interest is around creating methods that allow efficient and effective adaptation of deep neural networks to cope with distribution shifts, rapidly learning new tasks, and supporting efficient unlearning of data points. My research falls in the areas of few-shot learning, meta-learning, domain adaptation and machine unlearning.
What makes unlearning hard and what to do about it
Kairan Zhao, Meghdad Kurmanji, George-Octavian Barbulescu, Eleni Triantafillou*, Peter Triantafillou*. NeurIPS 2024. [paper].
Machine Unlearning in Learned Databases: An Experimental Analysis
Meghdad Kurmanji, Eleni Triantafillou, Peter Triantafillou. SIGMOD 2024. [paper].
Towards Unbounded Machine Unlearning
Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, Eleni Triantafillou. NeurIPS 2023. [paper].
In Search for a Generalizable Method for Source Free Domain Adaptation
Malik Boudiaf, Tom Denton, Bart van Merriënboer, Vincent Dumoulin*, Eleni Triantafillou*. ICML 2023. [paper].
Learning a Universal Template for Few-shot Dataset Generalization.
Eleni Triantafillou, Hugo Larochelle, Richard Zemel, Vincent Dumoulin. ICML 2021. [paper].
Meta-dataset: A dataset of datasets for learning to learn from few examples.
Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle. ICLR 2020. [paper].
Meta Learning for Semi-Supervised Few-Shot Classification.
Mengye Ren, Eleni Triantafillou*, Sachin Ravi*, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle, Richard Zemel. ICLR 2018. [paper]
Few-Shot Learning Through an Information Retrieval Lens.
Eleni Triantafillou, Richard Zemel and Raquel Urtasun. NeurIPS 2017. [paper]
Non-Deterministic Planning
with Temporally Extended Goals: LTL over finite and infinite traces.
Alberto Camacho, Eleni Triantafillou, Christian Muise, Jorge Baier, and Sheila McIlraith. AAAI, 2017. [paper]
Improved Localized Unlearning through the Lens of Memorization
Reihaneh Torkzadehmahani, Reza Nasirigerdeh, Georgios Kaissis, Daniel Rueckert, Gintare Karolina Dziugaite, Eleni Triantafillou. 2024. [paper].
Are we making progress in unlearning? Findings from the first NeurIPS unlearning competition.
Eleni Triantafillou, Peter Kairouz, Fabian Pedregosa, Jamie Hayes, Meghdad Kurmanji, Kairan Zhao, Vincent Dumoulin, Julio Jacques Junior,
Ioannis Mitliagkas, Jun Wan, Lisheng Sun Hosoya, Sergio Escalera,
Gintare Karolina Dziugaite, Peter Triantafillou, Isabelle Guyon. 2024. [paper].
Inexact Unlearning Needs More Careful Evaluations to Avoid a False Sense of Privacy
Jamie Hayes, Ilia Shumailov, Eleni Triantafillou, Amr Khalifa and Nicolas Papernot. 2024. [paper].
Data Selection for Transfer Unlearning
Nazanin Mohammadi Sepahvand, Vincent Dumoulin, Eleni Triantafillou*, Gintare Karolina Dziugaite∗. 2024. [paper].
Flexible Few-Shot Learning with Contextual Similarity.
Mengye Ren*, Eleni Triantafillou*, Kuan-Chieh Wang*, James Lucas*, Jake Snell, Xaq Pitkow, Andreas S. Tolias, Richard Zemel. 2020. [paper].
Learning Flexible Classifiers with Shot-CONditional Episodic (SCONE) Training.
Eleni Triantafillou, Vincent Dumoulin, Hugo Larochelle, Richard Zemel. Meta-Learning workshop at NeurIPS 2020. [paper].
Few-shot Out-of-Distribution Detection.
Kuan-Chieh Wang, Paul Vicol, Eleni Triantafillou, Richard Zemel. UDL workshop at ICML 2020 (spotlight). [paper].
Few-shot Learning for Free by Modelling Global Class Structure.
Xuechen Li*, Will Grathwohl*, Eleni Triantafillou*, David Duvenaud, Richard Zemel. Meta-learning workshop at NeurIPS 2018. [paper].
Towards Generalizable Sentence Embeddings
Eleni Triantafillou, Jamie Ryan Kiros, Raquel Urtasun, Richard Zemel.
1st Workshop on Representation Learning for NLP at ACL 2016.
[paper]
A Unifying Framework for Planning with LTL and Regular Expressions
Eleni Triantafillou, Jorge A. Baier, Sheila A. McIlraith.
MOCHAP workshop at ICAPS 2015.
[paper]